Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.
نویسنده
چکیده
The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.
منابع مشابه
Scaling, Entanglement, and Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by analyzing the properties of the concurrence for a class of exactly solvable models in one dimension. Entanglement can be classified in the framework of the scaling theory of phase transitions. There is a profound differences between the classical correlations, whose correlation lenght diverges at the phase transition,...
متن کاملAn order parameter for impurity systems at quantum criticality
A quantum phase transition may occur in the ground state of a system at zero temperature when a controlling field or interaction is varied. The resulting quantum fluctuations which trigger the transition produce scaling behaviour of various observables, governed by universal critical exponents. A particularly interesting class of such transitions appear in systems with quantum impurities where ...
متن کاملar X iv : q ua nt - p h / 02 02 02 9 v 2 1 6 A pr 2 00 2 Scaling of Entanglement close to a Quantum Phase Transitions
In this Letter we discuss the entanglement near a quantum phase transition by analyzing the properties of the concurrence for a class of exactly solvable models in one dimension. We find that entanglement can be classified in the framework of scaling theory. Further, we reveal a profound difference between classical correlations and the non-local quantum correlation, entanglement: the correlati...
متن کاملImpurity entanglement entropy in Kondo systems from conformal field theory
The entanglement entropy in Kondo impurity systems is studied analytically using conformal field theory. From the impurity contribution to the scaling corrections of the entanglement entropy we extract information about the screening cloud profile for general non-Fermi-liquid fixed points. By also considering the finite-temperature corrections to scaling of the von Neumann entropy we point out ...
متن کاملComputational Methods for the Measurement of Entanglement in Condensed Matter Systems
At the interface of quantum information and condensed matter physics, the study of entanglement in quantum many-body systems requires a new toolset which combines concepts from each. This thesis introduces a set of computational methods to study phases and phase transitions in lattice models of quantum systems, using the Renyi entropies as a means of quantifying entanglement. The scaling of ent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 118 3 شماره
صفحات -
تاریخ انتشار 2017